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FOREWORD

This report documents work accomplished during the period from 26 June
1973 to 30 January 1974 by the Armament Systems Department, General Electric
Company, Burlington, Vermont, under Contract F08635-73-C-0165 with the Air
Force Armament Laboratory, Eglin Air Force Base, Florida. The program monitor
for the Armament Laboratory was Mr. Gerald L. Winchenbach (DLDL).

The principal investigators for the contractor were Wayne H. Hathaway
and Robert H. Whyte.

This technical report has been reviewed and is approved.
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Director, Guns and Rockets Division
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ABSTRACT
;
i 3 The numerical integration technique to be utilized in the reduction and
: i analysis of data gathered in the USAF Aeroballistic Research Facility located
; at Eglin Air Force Base is described. The method of Chapman and Kirk has J
been developed into a system of digitai computer programs which may be easily g
and routinely used in the analysis of data derived from spark range firing. ;
3 The equations of motion for a missile/projectile in free-flight are derived
in this report utilizing the six degrees of freedom. The parametric equations,
; ‘ philosophy, and methods of implementation are also derived and discussed.
E‘ Brief descriptions of the computer program involved are also given. :
1
3
J :
j
f |
;
] ?
L Distribution limited to U. S. Government agencies only; ’
. this report documents test and evaluation; distribution
limitation applied February 1974, Other requests for

this document must be referred to the Air Force Armament
Laboratory (DLDL), Eglin Air Force Base, Florida 32542,
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SECTION I
INTRODUCTION AND BACKGROUND
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This report will discuss the rationale and mathematics involved in the
{ impiementation of a numerical integration data reduction technique to be
utilized with the USAF Aeroballistic Research Facilityl, Air Force Armament

Laboratory, Eglin Air Force Base, Florida.

This numerical technique was reported on by Chapman and Kirk2 in 1969.
Goodman3 (1966) and Knadler4 (1969) also reported on this general technique
under separate efforts. Whyte and Beliveau of General Electric Company5’6’7 3
(1969, 1970) applied this toechnique to ballistic range, yaw sonde, and wind
tunnel data. Beginning in 1971 General tlectric Company, under various in- ;
house efforts and United States Government contracts, has developed and
applied this technique to a wide variety of exterior ballistic and interior

ballistic analysis problems.s'15

A et erl il Y

In October 1972 General Electric Company delivered to Arnold Engineering
Development Center a series of numerical integration data reduction computer
? programs13 for use with VKF Range G. These programs are now being utilized

in the routine production of free-flight data from Range G.

The capability exists in these prigrams to analyze up to three experi-
ments simultaneously and to identify Mach number non-linearities in addition

to angle of attack non-linearities.,

The original programs were obtained by AFATL from AEDC and have been
modified to complement the large computational capability of ADTC. Most 4
importantly, the programs have been tailored to provide maximum flexibility
of use while decreasing the tasks required of the project engineer.

The inputs and outputs of the various computer programs will be dis-
cussed briefly in this report. A forthcoming document will report on the
details, flow charts, input, output, and options.
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SECTION II
AEROBALLISTIC RESEARCH FACILITY

The United States Air Force Aeroballistic Research Facility is part of
the Air Force Armament Laboratory located at Eglin Air Force Base, Florida.
This facility, now under construction, is described in detail in reference 1.

The construction is expected to be complete and instrumentation installed by

summer 1974.

This facility, essentially a ballistic range, is constructed of concrete
and is approximately 780 feet in length. The basic instrumentation will be
50 spark shadowgraph stations. Each station will consist of two sparks and

two cameras located in the wall and floor (pit).

The stations may be set up at 131 locations along the range thus allow-

ing considerable spacing flexibility to enhance data acquisition for contem-

plated test programs.

Timing data will be provided at each of the 50 stations by electronic

chronographs. They ave operated with an IR detection system and. the spark

apparatus.

The estimated accuracies of measurements are as follows:

Time #0,1 microsecond
Position *0.0013 foot
Angle *0.10 degree

This range will be continuously calibrated through the use of catenary
wires suspended in front of the wall and ceiling reflective screens. Refer-
ence beads will be precisely positioned along the wires, with the location of

all beads known to 0.0001 foot.

~
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STATEMENT OF PROBLEM

The angular and translational motion of a projectile as it traverses a
ballistic range may be observed, measured, and documented by means discussed
in the previous section and reference 1. The following basic data are ob-
tained as a function of time: Xe, Ye’ Ze’ 6, ¥, and ¢. Knowing the physical
properties of the projectile and the atmospheric properties of the range
facility, the problem becomes one of identifying the aerodynamic coefficients

and their magnitudes which are causing the observed motion.

The most prevalent method of analyzing ballistic range data is known as

linear theory. Murphy16—18, MacAllisterlg’ZO, and others of BRL as well as

Nicolaideslg’zl’22 and Eikenberry23 have developed this theory to the extent
that certain types of non-linearities car also be analyzed. However, unless
many cycles of data are present and/or multiple experiments conducted, the
only non-linear coefficient which can be consistently identified is the cubic

pitching moment.

In 1969 Chapman and Kirk of NASA Ames, in attempting to analyze free
flight data, developed a technique which allowed the differential equations

of motion to be used directly in the fitting process.

Linear theory, on the other hand, depends on using the closed form
solution to the equations of motion in the fitting process. This technique
is very effective providing the assumptions required to obtain the closed
form solution, i.e., small velocity drop, nearly constant pd/2V, linear aero-

dynamics, and small angular motion are not drastically violated.

None of the above assumptions are required when using the differential
equations of motion directly. The only drawbacks or restrictions are in the
identification of the coefficients which are to be solved for and the efficient
coding of a computer program such that a solution may be found at a reasonable

cost,
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The system in use at AEDC and Eglin AFB uses the linear theory programs
in concert with the numerical integration programs such that the user has : 5
fewer problems in obtaining adequate reductions. Linear theory reduction .and

numerical integration reductions may be directly compared as they occur in the

same computer run.

dand ol

TRVCY SOy

[P =

o he g aa e




T TR T

P

SECTION 1V
THEORY AND EQUATIONS

1. EQUATIONS OF MOTION

The equations of motion are derived in a fixed plane coordinate system.

The Euler angles, as well as the missile-fixed velocities and earth-fixed

velocities, are integrated numerically (step-wise) to simulate the projectile

motion.

This formulation was chosen for the following reasons:

Allows largest time step for integration.
Most accurate for spin-stabilized or fast spinning projectiles.
Consistent with data acquisition.

Allows slight aerodynamic asymmetries.

The following assumptions are contained in the derivations:

1.
2.
3.
4,
5.

These derivations are patterned after Barnett's of Picatinny Arsenal,

No earth rotation effect on angular motion

Flat earth

Rotational symmetry (Cma = Tpe Iy = Iz, etc.)

Trim moments and forces are small.

Aerodynamic coefficients are expanded as polynomial functions

of the sine of the total angle of attack.

These references are interesting in that they describe the advantages of one
type of coordinate system as opposed to another, Barnett discusses the pro-

blem associated with obtaining adequate (accurate) simulations of spin sta-

bilized projectiles using a coordinate system which is attached to the projec-

tile and rolling with it. His conclusions and those of the authors of this
report are that adequaté simulations of spin stabilized projectiles may most
reliably be made with the fixed plane system. In addition a run time cost
savings of over 25 to 1 are realized when using a fixel plane simulation as

opposed to a rolling coordinate system simulation of questionable accuracy.

24,25
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a. Six Degrees of Freedom ;

Force Equations of Motion:

2_; g
TF=mn (Earth-fixed derivative) m
dt?
I F = Summation of forces acting on missile -
i
R = Vector from earth center to current missile C.G.
Eﬁ, }ﬁ, Eh, = Unit vectors aligned with missile-fixed coordinate system

(non-rotating)
o = Angular velocity of missile-fixed coordinate system-relative to

earth-fixed coordinate.

B T A P VN PR NI S U

— —

W= wgy Iy ey Iy v egy ky (@)

Bt e 5 b

in terms of missile-fixed coordinates

Equation (1) may be rewritten as: 4

2 =& -~
—_— d E R dE v 3
IF=m 3 m (3) p

dt dt

where: V = time rate of change of R, ji.e., missile velocity ‘
Equation (3) may be rewritten as follows: . !
|
— —
IF=m —— =mn +wXxV 4 %

a.
ot
.
ct

o . TP o e T 3 NN =¥ Oy
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where: V=ui, +v fh + W Fﬁ
-
d.V . . .
H. =Uui,+Vi,+WKk
_— H I H
dt

where all quantities in the right-hand side of Equation (4) are understood

(%)

(6)

to be expressed in missile coordinates (H). Intuitively, the presence of the

“® x V term relates the motion of the missile coordinate system, to which

forces and moments are referred, to earth-fixed coordinates.

Combining Equations (4), (5), and (6), and performing the indicated
operations, one then obtains the three component force equations:

EF,= m [u gy W 0y vj;(in the i direction)

IF,= m Ev * U U Oy w];(in the 'j_H direction}

EFyp= m [w g V- by uj;(in the T{H direction)

Moment Equations of Motion:

(7

Treating the moment equation in a similar manner to the force equation:

IL= = +wxd
dt dt
—
L L = Summation of moments acting on missile
——
J = Angular momentum of missile

(“’T) = Total angular velocity of the missile (rolling coordinates)

relative to earth coordinates.

(8)

e ant A
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: J=

I Copyg Ty + Ty Gapdyy Ty + Ty Copgy Ty (%)

where Ix’ Iy are the moments of inertia of the missile about the longitudinal
and traverse axes, respectively. Note that the assumption of rotational
symmetry (Iz = Iy) is implicitly made.

ST

- dy I

i e =L (e Tyt T (e T + I () K
F e R A SR R S

(10)

O

Appropriately combining Equations (2), (8), (9), and (10) results in
the component equations for the moments:

L

s = Ix Py *toeyn Ty (opdgy - oy Ty (opdyy

Ily = Iy Gagy vog T (opyy - oy Ty (updyy

: AERODYNAMIC FORCES

Three aerodynamic forces are considered: F

Axial drag

Normal force

Along missile axis

Perpendicular to missile axis in plane of yaw

Magnus force Perpendicular to plane of yaw




These forces are illustrated in Figurc 1 (arrows indicate positive

directions).
i
PLANE OF YAW
RMAL F
NORMAL FORCE VELOCITY OF MISSILE
: RELATIVE TO AIR
AXIAL DRAG 'H

MAGNUS FORCE

Figure 1. Force System

The axial drag acts along the negative Tﬁ axis which, by definition, is

directed from the CG towards the nose of the missile.

4
, o d®x n?
(Axial Drag)y, = - — T,
[
= - qA CX

Where q = dynamic pressure = 1/2 p V2

A = cross sectional area
¥ . .
; The normal force components act opposite to the directions of v and w.
Using known geometry, one can deduce the components of the normal force:
v

(Normal Force)YH =-qA CNa sin o f 2 )
Vi o+ w

where: E&a = The slope of the Normal Force coefficient plotted as a function

of sin a.

i




Plbea akiq

T rapr ™

sin @ = Vv2 + w A%
: - .TAT Y
.. (Normal Force)YH =-qA CNa v
(Normal Force)ZH =-qA CNa sin a 2 2
vVi+ W
-, = W
=-qACNaV

The Magnus Force acts in a direction perpendicular to the plane of yaw.
As in the case of the Normal Force, using known velocity geometry the Magnus

Force components are:

.. 9Ad T sing ~—Y—
(Magnus Force)y, = + gi"if‘ (o) vy CYpa sin @ —
v+ w
Where E}pa = The slope of the Magnus Force coefficient plotted as a function

of sin a.

_qAd = W
(Magnus Force)YH R (mT)XH CYpa v

_.9Ad T. ¥
(Magnus Force)ZH 5V (w,r)XH CYpa v

Summary of Forces: (excluding gravity)

z FXH =-qA Cx

- - TAT qAd T ¥

E Ry = - QA G vV + S Gy Gy 7 (12)
- _GAT, %_gqAd A

EFy= - A Gy v-"7v (o Cypa ¥

10
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AERODYNAMIC MOMENTS

The following moments are considered:

Perpendicular to plane of yaw
In plane of yaw
Perpendicular to missile axis
Along missile axis
Perpendicular to missile axis

Pitching Moment
Magnus Moment
Damping Moment
Spin Deceleration
Trim Moment

Rotational sign convention is indicated in Figure 1.

Pitching Moment Components:

‘o s S TAAT i T W
(Pitching Moment)YH =qAd Cma sin o . 5
\/v + W

Where: Eﬁa = The slope of the Pitching Moment coefficient plotted as function

of sin .

1

0
>
o
o)

(Pitching Moment)YH =

1]

]
£

>

o

(@]

(Pitching Moment)ZH

Magnus Moment Components:

. S

2 2

- 2
- qAd = .=
(Magnus Moment)YH - (wT)XH Cnpa sin o
Ve o+ w

¥here: Egpa = The slope of the Magnus Moment coefficient plotted as a function
of sin «,
(Magnus Moment) =E'Ad2 () vy G w
gn YH™ 2V Yy bnpe V

2
=3 Ad T ¥
(Magnus Moment)ZH TV (m,r)XH Cnpu v

11 ;
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Damping Moment Components:

- 2
. _qAd =
(Damping Moment)YH 5V (wT)YH Cmq

Where: Eﬁq = Damping Moment coefficient.

-, 2
_qu ) c

(Damplng Moment) H” TV ((L)T 7H mq

Spin Deceleration Moment:

T A d°

(Spin Moment)XH = S5 (w,r)XH C1p

Clp = Spin deceleration coefficient

Trim Moment Components:

This moment is induced by missile asymmetries and is assumed negligible
for spin-stabilized missiles.

(Trim Moment)YH -qAd [Cm6 (SB sin ¢ - GA cos ¢)]

(Trim Moment)ZH qAd [CmG(GB cos ¢ + GA sin ¢)]

Where: Cm = Trim Moment Coefficient
8, = Components of the trim angle

) = Roll angle

12

LM o i e e s R : - PV ‘..__,,u_..‘_____‘._.“ns—n‘mj

v
("

rciiees

¢ s i R 1

ST NN VRPN

GEPPPC RS TINY

IO UM TS

1

YU L VSRR + WU S

N Ry




i

TR TTTRTTIAN TR WOy

Summary of Moments:

q A d° (13)

M (t»,r)YH Cmq -qAd [Cmd (GB sin ¢ - <SA cos ¢)1]

2

= - T Y ﬂ._:A__d_ el L

Eloyg=-aAdC v+ v Oy Gpa 7
2

qAd

+ 3-2-—v—— (wT)ZH Cmq +qAd [CmG (GB cos ¢ + GA sin ¢)1

Substituting Equations (12) into (7) and Equations (13) into (11), the
six-degree-of-freedom equations describing the motion of a missile (excluding

gravity) can be written as:

Forces:

-qA EX =m [u+ Wy W - Gy v]; {in "i'H direction} (14)

e
o

— ., = V_QqAd = W _ - 4 .
-G A CNa 7t STV‘ (w,r) XH CYpa vom [v + Wy U = Oy W],{JH d1rect1on}(15)

- = W = v _ BEPT .
-qA cnu v 5V (“”T)XH CYpa v=m [w+ Oy V - Oy u],{kH dzrectlor}(m)

13




Moments:

5V (wT)XH Clp = Ix (wT)XH *+ Oy Iy (wT)ZH - W Iy (wT)YH;{rotation iH} a7

SN R T A R TR AT Wﬁvﬂj

] — - W 'q"Adz - v+a-—-'-\—-(-l—2-(w) C ’ !
quCmaV+ 3V (wT)XHCnpaV 2V T’YH "mq :

-qAd [Cmé (GB sin ¢ - GA cos ¢)] = Iy (NT)YH + Wy Ix (wT)XH b

\

- Uy Iy (wT)ZH; {rotatlon JH} (18)

L — 2 S 2
GAd G v v oy Cpa 7 7V Pz G

<|<

+'(fAd[Cm(S (6Bcos¢»+6 sin ¢)] = I

A y ©@plzg * ogy I, (opdyy

- oy I, (“’T)XH ; {rotation FH} . (19)

Equations (14) through (19) are of limited use until one knows explicitly
how the missile-fixed coordinate system (H) is moving with respect to earth- ﬁ
fixed coordinates (E). Further, one often has vector quantities expressed in L
earth coordinates (such as wind and gravitational attraction) which must be
properly introduced into the (H) coordinates. Therefore, additional relation-
ships between the (H) and (E) coordinates must be derived. In particular, one
must know how the (H) coordinate system is oriented relative to the (E) coordi-
nates at all times. The use of Euler angles seems to be the most straight-
forward approach. In it, one rotates a coordinate system, initially coinci-
dent with the (E) system, about sclected axes so that after the rotations

14 ]

E
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are performed in a specified sequence, this coordinate system will have the
same orientation as the (H) system. These rotations are illustrated by
Figure 2.

MISSILE AXIS

HORIZONTAL
PLANE

3

X, Y,2 —  Earth Axis Coordinates
x,y,2 — Intermediate Axis Coordinates !

(after first rotation — through W)
X,Y,Z —  Missile Axis Coordinates a
© and ¥ are the Euler angles ‘
Figure 2. Euler Coordinate System

15 N
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Figure 2 shows the (H) and (E) coordinate system. The missile-fixed
rolling coordinate system (M) is defined as simply the (H) coordinate system

rotating about the missile axis at an angular rate of ¢ through the angle ¢.

Previously defined quantities in the equations of motion may now be related : %
through the Euler angles to earth-fixed coordinates as follows:

Wy = - ¥ sin 6 ' ?
gy = 6 S
wZH =¥y cos O

(I)XH = - wZH tan 6
. . . . ’;%
(wT)XH = ¢ + Wy = ¢ - ¢ sin 6 (20) §
. i
)y = vyy = O g

(W) gy = @ Y cos 9
T’ ZH ZH

o P . 2
(wT)XH = ¢ - Wors tan 6 - Wors 8 sec” 6

= ; - tan © (& cos 6 - i é sin 8) - é @/cos 0
(opdyy = ©
(«:)T)ZH = $ cos 6 - & é sin 6

Through appropriate substitntion of Equations (20), the equations of
motion may be rewritten as:

Force Equations:

e i sk B e e et e i e L At AT e A e b L

- qA Ek =m [u#+ 6 W - i cos 0 v] (21)

; {}n Eh X) direction:}

16
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_=AT Y q!\de w
QAT TV Ypa ¥

+
<
t 4
w
e
=
D
—

-GAC w_gqAdg ¥V
QAT 7~ 2V Cypa V

Moment Equations:

(- ¢ sin 0) - m [v ¢ ¢ ucos t (A
;{In -j-H (Y) direction }

(ia-‘i:sine)=m[v.v-:pvsine (23)

;4 In EH 2) direction}

- 2 . . o . P
g-zf-\ié—(‘.lp((b-wsine)=1x[¢atane(xpcose-wesine) (24)

- ‘P é/cos 8]

: {Rotation about TH (X)}

2

- 2 —-
- = w,gAd E V4 s Ad” =
qucmV+3—-———-2V cnpav(¢-¢sxne)+3-2—\7—ocmq (25)

-qu[Cma (6351n¢—

2
+Iy¢ cos 6 sin ©

2
- = V Ad” =
-GAdC, v T2 Cnpa

+ qAd[C (8 cos o+ 8y

+Iy(-¢vsin6)6-1x6(¢-ti:sin6)

GA cos )] = Iy5+ qu:cos 0 (¢ - ¥ sind)

: {Rotation about TH ) }
]

Y

) . - 2 .
%’-(¢-¢sin 9) +3,2-%—Lcmq¢cos 6 (26)

sin ¢)]1 = Iy (.4.1 cos e-.l.p(.)sin 8)

; {Rotatiou about 'R'H A }

17




Equations (21) through (26) are the 6-DOF equations of motion expressed
in terms of Euler angles without gravitational effects.

Gravitational Force:

7o AFTOY Y

Assumption: Flat Earth

(Gravity) = -mg iﬁ

where Eﬁ is unit vector in the +Z; direction

—

Replacing kE by its representation in (H) coordinates, one obtains:

Raat e

-mg Eé = mg sin 6 Eh - mg cos 6 iﬁ

The gravity force can now be substituted directly into Equations (21)
and (23).

1 Spin is defined as the total angular velocity of the missile about its ;
g own axis,

* Spin = p = (up)yy = ¢ - ¥ sin 6 :

1 R

The 6-DOF equations of motion, upon substitution of the gravitational
force and spin identity and rearranging terms, are written as follows:

Force Equations:

Sisdeiicd

E& +gsin®-06w+ycosbv 27

31>

u=-3

‘*  —Azx Vv _QqQAdps w _° (28)
v=-gq E'C TS5y CYpa vV - Y cos 6 [u + w tan 6] .




34t

oy

'\"*“mvw—u

v=-9Ac ¥ _dqApds v ) (sin : 29
v NV M2V CYpa v-8cos8+y(sing)vs+ou (29)
Moment Equations:
” _Adz b . ¢ o o
¢=3———.P.Ix v Clp+tan 8{Y cos 6 - ¢ 6 sin 8] + 8 Y/cos © (30)
5.3Ad ¢ w,ogad . - gadp. v
I ma V2V T~ mq 2V 1 npa V (31)
qAd , . I
- =7 [Cp(8y sin ¢ - 8, cos ¢)] - y cos 6 p
y y
2
-y cos 6 sin 6
pel-TAdy v, Tade o TAlre v
Iy ma V ZVIy mqwcs va_i;_npav (32)

+ 3-5—9-[C (6, cos ¢ + § , sin ¢)] + 2 6 ¥ sin 6
Iy mé “°B A

+ e P Ix/Iy ] /cos 6

Ll

For the data reduction technique being discussed, the aerodynamic coeffi-

cients Em R Enpa , and C__ previously defined are assumed to be non-linear and
are therefore expanded to include higher order dependencies on the angle of

attack, o. These dependencies are assumed to exist as a function of sin u.

The following non-linearities are assumed:
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.. 2 — . 4 — .. 6 —
=C +C sin + C si + C i + -
o o a mocs n o “nas sin” « Cma (VO V)

v

=4
=]

=C _+G , sinz‘E

Mt L P N s ik

18

1
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O

-

. 2 = . 4 =
Cnpa npa + Cnpa3 sin” o + Cnpas sin’ «

The preceding moment coefficient expansions are utilized in the angular
motion programs.

Similar expansions on the force coefficients are used in the translational
equations of motion which will be developed next.

b. Translational Equations of Motion

Tn the derivation, the previously defined force equations of motion will
m be utilized with the addition of a trim force in the missile Y-Z plane, de-
1 fined as components in the missile Y and Z directiuns. This trim force will

account for any slight asymmetries present (intentional or otherwise) in the
missile configuration. "

us=s - SEA' Ek + gsin 8 - 6w+ ycosbv (33)
C..9AF Y,qApdg W _
vV = = CNa 7o 5 Ypa 7 Y cos 8 [u + w tan 6]
- 5. si 9A
CNGA (GB cos ¢ GA sin ¢) ( = (34)

TR
*
>

w = - -C_Na% E;n—g-——fp %-gcosefq;sinev

+0u- CNGA (6 cos ¢ + GB sin ¢) ( ﬂﬁé,) (35)

20
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The following expressions relate the earth-fixed velocities to the missile

velocities using the definitions of the Fuler angles:

VXe = U Cos 6 cos P -vsinyg+wsin0cos y

(36)
VYe =ucos 6 sin ¢ + v cos § + w sin 6 sin ¢
VZe = -usin 0 + w cos 0

Taking the derivative of Equations (36) with respect to time, one obtains:

. .

. .

VXe =Ucos 6 cos ¥ -Vvsiny +wsin 0 cos ¢ (37)

~usin 6 cos P 6

+ wecos 6 cos P b

ucos 6 sin P +

Ye

- u sin 6 sin ¢ §

+wcos §siny 6

Ze

~ucos 6sin ¢ ¢ - vcos Yy

- wsin 8 sin ¢ ¥

vcos Y +wsin 6 sin ¢ (38)

+ucos ®cosYyP~vsinyyy

+ wsin 6 cos ¢y ¢

=-usin 6+wcos 6-ucos 66 ~wsino 6 (39)

Substitution of Equations (33), (34), and (35) into (37), (38), and (39)

provides the translational equations of motion:

Vye = - %—%-Vz Ek cos 6 cos Y + %—%-Vz CN V sin ¢ (40)
p A 2— sin 6 cos ¥ - ERA_P_‘lchp -smq)

- EV G v
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_pA pd v = Vo

1 T v CYpa v sin 6 cos ¢
Ef uz . . .
E * 5o ' [CNGA CGB cos ¢ GA sin ¢) sin ¢
- ]
; NGA (GA cos ¢ + GB sin ¢) sin 8 cos Y] ) t §
; C0AE cososiny - LAV T Y cos ‘
; VYe = -3 \'} Cx cos 6 sin ¢ ~ 5 CNa 7 ©os P (4D

| A e W osing+ LARA YT W

T \ CNa v sin 0 sin ¢ + T v CYpa i €0S Y
_pApd .= Vo .
T A CYpa v sin 6 sin ¢
' P A2 . s 5 s 3
" ( NSA ( g €05 ¢ - &, sin ¢) cos ¢
: 3
‘ . . . f
3 + CNGA (6A cos ¢ + GB sin ¢) sin 6 sin Y]
p-
i, =2AV T sine-2A 2 ¥
VZe = 5 v Cx sin 6 5 V' CNa v ©OS 9 (42)

.

. A 2
'CNGA (GA cos ¢+<SB sin ¢) cos 6 (T%v )-

PO

e Aok

The following non-linearities are assumed for the force coefficients:

— 2
Cx = Cx + Cx? € + CX

v v-v)

= 2
CNa - CNa * CNa3 ¢
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— 2
CYpu = cYpot + CYpa3 €

Where: € = sin” o

Reference Velocity (constant)

<3
il

¢. Modified Six Degrees of Freedom

As ballistic ranges are level and the ballistic trajectories flat, the
equations of motion from which the parametric equations are derived can be
modified. This is a special case and cannot be applied to high angle fire
problems (Ye > 30°) such as yaw sonde reductions. Reference 11 discusses

the consequences of this assumption in the high angle fire mode.

The following assumptions are made:

and from linear theory (Ref. 17)

C =
™ (3p)

C =C
npa(SD) npa N

Essentially what is done is to approximate the 6-DOF equations with 3-DOF
equations and allow correction for the effect on the damping of CNa'

The effect of trajectory curvature is accounted for by the angular rate

g cos 8/V,

é(SD) = 9(60) + g cos 6/V
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This term results in the generation of the yaw of repose.

It should be pointed out and understood that the modified equations are
only used in deriving the parametric equations and are not used for computing

theoretical motions. Equations (28), (29), (31), and (32) are utilized for
motion generation.

Approximate 6-DOF Equations

Using the previous assumptions, Equations (31) and (32) reduce to:

8= Mma sin 8 cos ¢ + Mmq [6 + g cos 6/V]

..ana sin ¢ - Mmse - ycos6p Ix/Iy
2

-y cos 6 sin ©

Y = [Mma sin ¢ + Mmq ¥ cos 6 + ana sin 6 cos Y + Mm6

v
. Ix » ]
+ (6 +gcos 8/V) p T * 2 sin 6 (8 + g cos 6/V) y]/cos ©
Y
Where:
_—Ad 2 " V -V
Nha = q T;_'[Cma + Cmm3 e + Cmus e +C a Vs )]
T A & 2
Mmq -z-—v—-r; [cmq + Cmq € =~ CN(! 2 Iy/m ]
2 2
Ad d2
npa 2V Iy P [Cnpa Cnpa3 npos e CNa 2 Ix/m ]
24
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A

_— Ad .
ﬁmse = q T;:' [Cmd (GB sin ¢ - GA cos ¢)]

— Ad .
=q 7— [Cmd (GB cos ¢ + GA sin ¢)]

s
" y

As the term g cos 6/V is usually small and 1.0 > cos 6 > 0.9, this temm

is considered a constant when partial derivatives are taken.

d. Roll Equation

As previously derived and stated in Equation (30) the 6-DOF roll equation
is:
—— 2 * ‘p 6

b = e gx Clp (¢ -~ ¢ sin 6) + tan 6 ($ cos 6 - ¢ 6 sin 98) +c0S -

The preceding equation may be restated in the following equivalent form:

é =p+ i sin 9 (30a)
. = 2
qAhd” (30b)

P= pcC
2V T 1p

The above two equations are integrated simultaneously to produce the roll
angle, roll rate, and spin rate with the advantage of fewer higher order terms

than equation (30).

¥ will be computed from the available y versus time history. It should
be pointed out that the roll reduction is accomplished at the same time as

the translational motion reduction.

A fin cant moment (C

- 2
(Vo -V) EEAVST—I{] are added to equation (30b) for expanded capability.
X

—Ad .
16 8§ q T;—o and a velocity dependent C1p [Clpv

25
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2. CHAPMAN-KIRK TECHNIQUE

The procedures utilized in the implementation of the Chapman-Kirk technique

are as follows:

1. Formulate equations of motion which are adequate to simulate the ex-

perimental data.

a. Select a broad general set of aerodynamic terms.

b. Define possible non-linear terms; i.e., Mach number and angle of

attack.

2. Equations of motion are partially differentiated with respect to each

coefficient to form a set of parametric differential equations.
3. Integrate equations of motion numerically utilizing:

a. Estimated Aerodynamic Coefficients
b. Estimated Initial Conditions

4. Integrate parametric equations numerically to obtain values for the
partial derivatives of the state variables with respect to each coefficient.

5. A differential corrections equation is set up from a Taylor expansion

of the dependent variable of the equations of motion.

6. The experimental data are then compared to the dependent variables in
a least squares sense,and corrections to the coefficients and initial condi-

tions are obtained from the differential correction equations.

7. Step 3 is repeated with adjusted coefficients and initial conditions,

and the process is repeated until convergence is achieved.
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a. Differential Corrections and Least Squares Theory

The methods of least squares and differential corrections are employed
by computer programs to obtain corrections to be applied to the coefficients
so that the solutions to the equations of motion are a better fit to the test
data. A brief description of this technique will be given considering two
data sets. The primary goal of this description is to illustrate how two or

more data sets may be handled simultaneously. Consider the following

equations:
ay + Cjay + Cyuy + Cg = 0
a, + Cjo, + Cyay + Cg = 0
a = Angles from data set one
@, = Angles from data set two

Although the above equations are linear, it is well known that aerodynamic
equations of motion are often non-linear in nature. Regardless of the linear-
ity or non-linearity of the equations of motion, the theory of least squares
is not sufficient in itself to solve for aerodynamic properties, and differ-
ential corrections are employed. The above equations are presented only for
simplicity and clarity. The real equations of motion cover all six degrees

of freedom and are coupled.

Let: C4 = 00 = initial condition on oy
C5 = ;10 = initial condition on &1
C6 = 0 = initial condition on ay
C7 = &20 = initial condition on &2
Cl’ C2, and C3 are constant coefficients to be determined and are common

to both data sets.
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Let:

t = The variable parameter (time)

a, = £ (C;, €y, Cqy Gy C,y ©)
az =g (CI’ Czs C3; C6’ C7: t)
Eys = £ (€g5 Cpy Cg, s Cg, €5 - a5
Byj = & (Cps Gy Cgy Cgy Cpy £ = iy, |
A
L] az
E.. computed
2j . a
JL 1
JL_ experimental
1j >t
t.
]

With first approximations of the constants, a Taylor series expansion gives:

+E.=1f (CI’ C2, C3, C4, CS’ tj) = f (Co,tj) + A C1 fc

%15 7 "13

+ A C2

*AC E T T £

iacC
+

aZj + EZj =8 (C].’ CZ’ C3’ C6’ C7: tJ) = g (Cox tJ) + A Cl gc

+AC

1

fc + A C3 fc + A C4 fc

3]

2!

2 3 4
2 2
[a Cll [a C2]
Cc
5 1, 2
2 2 2
[ac,] {a C.]
PR 4 5

c 2! c H c t
3 4 )

1

+AC +AC

g g g
2 c2 3 c3 4 c4
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(a C1]2 {a C2]2
*hCs s T & YT ke,
2 2
(s ¢, 1° [ c,1° (s c1°
M) 8. Y3 — 8, tv 8. *t....* (higher order
3, 6, 79 terms)
Where:
A0 %3 are experimental points of data sets one and two, respectively.
Elj EZ' are the errors between the data and the theoretical points of
b
data sets one and two respectively.
f (Co, t) = f [initial guesses at constants and initial conditions (al), t)
g (Co, t) = g [initial guesses at constants and initial conditions (az), t)

A Ci is the change in Ci between successive approximations.

are the partials of f and g, respectively, with respect to Ci

£f g, are the second partials of f and g, respectively, with respect

i, 1, o,
1

Assuming that the A C's are small such that the second and higher order
terms can be neglected, the following set of equations result:

= f (Co, tj) + A C1 fc + A C2 fc + A C3 fc + A C4 fc + A C5 fC

1570 1 2 3 4 5

a2j + EZj =g (Co’ tj) + A C1 g, t+4 C2 g, *+ 4 Cs g, * A C6 g, * A C7 8.

1 2 3 6 7

Let the residuals be the error at each point that result from using the

initial guesses of the constants and initial conditions.
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[alj f (Co, tj)] = [A C1 fc + 4 C2 fc + A C3 fc

1j 1 2 3 g

[38)

+AC4fC4+AC fCS-E.]

R =[a2j-g(C

2
23 o’ tj)] = [a ¢ g. *+ 4 C2 g, +2 C3 g

1 2 3
t A C AC E. 1% |
3 | t A% gc6 teYy gc7 B Zj] .

Introducing least squares theory, the following results: ]

3 R? .
. 0= “i=2[aC, f +AC, £ +AC, £ +A4C, £ +AC f -E, Jf |
3 E_K"E; 1 4 2 c2 3 Cq 4 Cy4 5 cs 1j ci 13
3 Rza i
0= 2j=2([aC, g +4C,g +4C,g +AC g +AC,g -E,.lg 3
AT 1 < 2 ¢y 3 Cq 6 c6 7 cq 2j ¢

1

In matrix notation:

[A] [a C] = [R]

o )
=

17 PHyp BHg D H DH D H T H , :

L H21 z H22 pX H23 z H24 T HZS bX H26 ) H27

51 L Hgp DHyg D Hgy T Hye DHpo 2 Ho, p
B (Al = |EHy TH, XH g ZH DHDHLH,

. y .

IH, EHg IHg THg DH TR TH :

% 1161 pX “62 L ”63 by “64 b H65 pX }166 b H()_/.h

71 ¥l X llgg Nollg, X Hag 2 lly 2y
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(L E, f +E g.
1 1 2 < ~ -
AC
pX E1 fc + E2 g 1
2 2
A C, ;
LE f +E g i
1 Cq 2 s A C3 %
| zE, £ +E, g . f
[R] = 1 ¢y 2 Cy [a c] A C4 ;
LE, f +E, g AC :
1 Cg 2 Cg 5 ;
A C ;
L El fc * EZ & 6 j
6 6 i
A C7
TE £ +Eg - J
L 1%, " 72 %c, ] {

The summation is from 1 to N, where N is the number of data points in

each data set, 1

f ,f ,g. , g donot appear in the equations and are equal to zero,
c c c c
6 7 4
The reason for this is that the initial conditions are unique to each data

set, as opposed to the common set of coefficients used by all data sets,

b. Parametric Equations

(1) Derivation of Generalized Parametric Differential Equation for
Translational Motion

Consider equation (40):

‘ p A2 2
Ve * 7V [Cx + Cyp e + Cp (V- V)] cos & cos y (43)

0 A2
TV Kyt C

2. v .
m e ] v-51n ]

Nasg

A 2 2. W .
= ) [CNa + Cng e”] 7 Sin 6 cos ¥

©

+

[ V)
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i Let:

L RPAPdYV
4m Vv

+pA

p A

m

p A

Yim

2
d V 2.w .,
[CYpa + CYpag 7] v sin ¥

d v?

P 2, v _.
TV [Cypa+Cypa3t:]V51n6cosxp

2
\Y CNG (GB cos ¢ - §

A

A sin ¢) sin ¢

v CNSA (GA cos ¢ + GB sin ¢) sin 6 cos ¢ = 0

%o 10 :) :/1\1 “x2

X Gy = 55 CNas

Y0 C12 ‘= L},n,‘}_fl CYpa3
;0 RER K

% “14 7 %5, a (%“n?)
io “15 = e, %8 (%‘%)
5 O

%-% CNa

%_:' pd (.:Ypa
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Rewriting Equation (43) with these definitions, one obtains:

M 41

2 [c, + C

+

Cl3 w - Vo)] cos 8 cos ¢ 49

Xe 10 €

V2 [C8 + C11 eZ] (%-sin v - %-sin 6 cos V)

+

2, W . v .
' [C9 + C12 €] (v-51n ¥ + g sin 6 cos ¥)

2
Vv [(C15 cos ¢ - C

14 sin ¢) sin ¥ - (C14 cos $

+ C15 sin ¢) sin 6 cos Y] =

To perform differential corrections the 9X/8C, is required where CJ = the
initial conditions on X Ye Ze X Y o e’ and the aerodynamlc coefficients
(C7 15) The aX/ac is obtalned through integration of 3V /BCJ For
computational purposes BV /GC is expressed in generalized form such

that it will be appllcable to all Cj's.

Taking the generalized partial of Equation (44) with respect to Cj’ the

following is obtained:

.
N N
N i s

oV,
X 2 )
acje +Q V(2C,+2Cpe” +C, (3V~2V)) cos 6 cos (45)
2, .V _. w o ]
-2V (C8 + C11 e”) (V-51n P - v Sin 6 cos )
N 2
+ (C9 c 5 € ) ( sin ¢ + V sin 6 cos )
-2V [(C15 cos ¢ - C14 sin ¢) sin ¢ - (C14 cos ¢ i
+ C,. sin sin 6 cos 9C. = - K. 9C./3C.
15 Sin ¢) ¥) [3C; = - Ky aC,/ac, ;
: where: Kj = the constant multiplier of the specific Cj from Equation (44), . E
2 B

. - - - V. si - ¥
for example, if Cj = C8’ then Kj = -V (V sin ¢ v Sin 8 cos V)
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It should be ncted that v/V and w/W are trigonometric functions of the
missile angles and are assumed to be independent variables. 6 and ¥ are
functions of 6y, ¥ _, VXe’ Vyes and V, . However as em and ¢y_ are considered
known and the anguTar components Y, and 6  small, 6 and ¢ have also been desig-

nated independent variables. It sﬁpuld bé pointed out that new profiles of

6 and y are computed for each iteration thus minimizing this assumption pro-
viding convergence is being achieved.

aV/acj must be expressed in temms of BVXe/BCj and is done as follows:
1
2 2 2.2

V= [vXe * VYe + vXe ]

Taking the generalized partial derivative, one obtains:

1 [2 VXe avXe/fgj f 2 VYe 8VYe/8Cj + 2 VZe avZe/acj]
aV/BCj =5
2 2 2.%
[vXe * VYe * vZe ]
A v V, 9V vV, 3V
Xe Xe Ye " Ye Ze -Ze (46)

W3y = [ A A ]

Substituting Equation (46) into (45), the generalized partial derivative

may be written as follows:

\' V. 9V vV, 3dV

v Vy. 9
Xe _Xe , Ye Ye _Ze Ze 1=B (47)

1 [ vV oC. vV 3C, VvV oC,
J J J

=V@2CcC,+2C¢C ez + C13 3v-2 Vo)) cos 6 cos ¥

where: A 7 10

1

1 ez) (%-sin ¥ - %-sin 8 cos )

2V (08 + C1

+

(C9 + C12 ez) (%-sin V o+ %-sin 8 cos ¥)

2V [(C15 cos ¢ - C14 sin ¢) sin ¥

(C,, cos ¢ + Cls sin §) sin 0 cos )

14
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Consider the remaining two equations of motion:

.

VZe

- V2 [C7 +C

vV, + V2 [C7 + C

Ye

V2 [C8 + C

+

' [C9 + C

+

+ C15

€2
10

10 ©

11

12

2
\' [(C15 cos ¢ - C

2

82] (% cos P -

14

ez] (% cos Y +

\Y

sin ¢) sin 6 sin ¢] = O

. 2
+ C13 w - Vo)] sin 8 + V [C8 + C

L
v

sin 6 sin ¢)

sin 0 sin ¢)

1

2, v 2 .
+V [C9 + C12 €] scos 6+V (C14 cos ¢ + C15 sin ¢

v

1

)

Similarly, as before, the generalized partial derivatives

(48) and (49) may be expressed in the following form:

where:

A

2

aer + Al vXe avXe + VYe aer vZe avZe]
aC. 2 VvV oC. V oC. v oC,
J J J ]
avZe s AL vXe avXe + VYe aer . VZe avZe]
oC. 3 V oC. V 3C. VvV oC.
J J J J
=v@C 20,y Cy5 (3V - 2V)) cos 6 sin ¥
+2V (C8 + C11 e2) (%-cos v+ v-sin o sin ¢)

35

+ C13 w - Vo)] cos 6 sin ¢

sin ¢) cos Y + (C14 cos ¢

(48)

eZ] %-cos 8(49)

cos 6 - g=20

of Equations

3

(50)

(51)




Jasicid b

2
Ev - (C9 + C12 ) (%-cos v - %-sine sin ¢)
( +2V [(C15 cos ¢ - C14 sin ¢) cos ¢

fy + (014 cos ¢ + C15 sin ¢) sin @ sin y] ’ /?

~
¥bAn,

B2 = -Kj (of VYe equation)

2
10 * C13 Bv-2 Vo)) sin 6

TN
"

Ag=-V@c +2¢C

+

2, W .
Y (08 + C11 e7) 7 cos @ ;

e 2, v
- + (Cg + C12 e7) v cos 6

+

2V (014 cos ¢ + C15 sin ¢) cosé

v = - Y 3 \
| B3 Kj (of VZe equation)

(2) Derivation of Parametric Differential Equations for Approximate
Six-DOF Equations

1 Consider cquation (32):
3 * . * . 1
¢ cos 6 - Mma sin ¢ - Mmq ¥ cos O - ana sin 6 cos ¢ (52) |
: I ’
- Mmdw - (6 + gcos 8/V) p T;' ;

-2sin0 (0 +gcos8/V) =0
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As previously stated, the term, g cos 0/V, is considered a constant in

taking the partial derivative of Equation (52),

Y cos 6 - Mma sin ¢y - Mmq Y cos 6 - ana sin 6 cos ¥ (53)
I

. x . * *
"My KPPy - 2sine (94K ¥ =0

where: = M 2 4 -
Mma Iy [Cma * Cmag € Cmas € Cmonv (VREF V)]

— 2
Mo =324 o Lo 82~Ca21y/md2]

W o,yy M Mg N
M =E—ﬁ-9f-£[ 2.0 etec, 21/mdd
npe 2V Iy npo npas npas Na X
qAd .

Mmse = ﬂT——— [Cma (SB sin ¢ - GA cos ¢]

M = Eiliii [C . (8§, cos ¢ + &, sin ¢]

méy Iy . mé “B B

2 . 2 - 2 2 2

€” = sin” a = sin” ¢ + sin” 0 cos” Y
K =g cos 0/V
g~ 8 /

To perform differential corrections, the 3y/3C; is required where C; = the
initial conditions on 6, ¥, 6, ¥, and the aerodynamic moment coefficients.
The 3y/3C; is obtained through integration of 3y/3C;. For computational pur-
poses ay/ C; is expressed in generalized form such %hat it will be applicable
to all C.'s. The angular motion reduction follows the completion of the roll
and tranilational motion reductions and thus the quantities V, @ and p are
considered known and can be designated independent variables,

Taking the generalized partial of Equation (53) with respect to C., the
following is obtained: J
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0 - 2 aM
Ay . 20 oY . Je mo 4
BC coS 8 - ¥ sin 0 5o - M COS Y gr— - sin ¥ e — (54)
j ] de
- M coseilp—-a-M q.;sine—-‘pcos6—2!!‘1
“mq acJ T
- M cosecosw——q— + M smOsmtbw --sinecosu:-'i)-)irmgg-ez
npa J npa ac N aC,
Ix aé aw ' aé
-Pf—-m--251n6(e+K)—-——-2$mew-5§—.-
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-2cose(e+l()1p = - F. 3C./3C.
J J J
where: . = the constant multiplier of the specific C_-; from Equation (53);
- q Ad 2
for example, if Cj Cmag’ then FJ e sin .

}’

From the definition of r»:2=sin2 @, the following generalized partial

derivative is obtained:

362 N a6
=—— = 2 sin ¢ cos ¢ + 2 cos Y sin 6 cos 6 —— (55)
3cj aCJ 3C, 3

2 sin2 9 sin ¢ cos ¢ -g—‘é—

t

2 . Pl 2 . L]
0s es1n2¢§-67+ cos ¢ sin 2 © acj

it

Substituting Equation (55) into (54), one obtains:
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%%—-cos 9 - ¢ sin 6 %%—-- Mm cos § %E—-- Mmq cos 6 %%— (56)
j 3 ] j

Y 36 3y ]
+ Mmq Y sin © 8CJ ana cos 6 cos ¢ —-—-+ M hpo sin 6 sin ¢ —— acJ H
Ix Bé . a& . éé f
“-ps— s+—-2sin6 (8 +K) =t -2sin 6 y —— - 2 cos 9 (6 ;
T_ C. g’ 3C. 3C. %
Yy J J j £
‘36 i ]
+ Kg) v 3C ;
aM npa 2 Y ‘
- [sin ¢ + ¢ cos 6 ———3-+ sin 6 cos ¢ -——B— 1 [cos® 6 sin 2¢-——— ) 5
Be s ae :

+ cos2 Y sin 2 9 %%—-]

- F. 23C./3C,
J J/ J

Equation (56) may be written in the following generalized form:

w 20

ac; c°Se”\1't"”31 o, TGty o F

j J

where: A1 = - ¢ sin 6 + Mmq Y sin 6 - ana

oM

-2cos 6 (6 + Kg) ¥ - [sin ¢ ——%ﬁ + ¢ cos ©
o€

+ sin 6 cos ¥ ——9221 [cos2 ¢ sin 2 6]
ae

I

cep X _ 2 cin oy
B1 =-p Iy 2 sin 8 ¥

39

cos 6 cos ¢

M
_nq

1>

2




T Ty

i Y

oM
mo

852

C1 - Mma cos ¥ + ana sin 6 sin ¢ - [sin ¢

. oM oM
+ Y cos @ ——%3-+ sin 8 cos ¥ -—%29] sin 2 ¢ cos2 0
o€ Je

D1 = - Mmq cos 6 - 2 sin 6 (6 + Kg)

From the definitions of Mma’ Mmq’ ana’ the following partial derivatives
are used in Equation (56):

M

ma=a-Ad[C +2¢C ]
382 Iy mo3 mog
oM - 2
—2= aAd ([ ]
3¢ 2V I 1
b4
M - 42
npe _ qAd 2 1c +2C ]
ae2 2V Iy npas npas
Consider the remaining equation of motion used:
6 - M, sinbcosy-M, (o + Kg) + ana sin y + M o (57)
. Ix .2
+ycos 8p g~ + Y cos 6 sin 6 = 0
y

Similarly, as before, Equation (57) may be expressed in the following
generalized form:

20 3 30 W Lo W
'zE'J.‘*Az ECJT*Bzic‘J.‘*Cz ac + Dy 3 = Gy;
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: . .. o X 2

E where: A, =-pysin® Iy M, COS ¥ cos 0 + y” cos 2 @

;E M . M M )

5 A - [cos ¢y sin® 7+ 0 l;‘q-sin\p——zf—-] cos” Y sin 2 6

> o€ o€ o€

] g
3
= i By = - Mmq

C2 = Mma sin Y sin 6 + ana cos ¥

3 . M M
- le ——%3-+ cos Y sin © o

M

- sin y —BP%] cos2 6 sin 2 y
2 2
o€ d¢ 13

I .

=+ sin 2 6 P

D2 = p cos 6 T
Yy

(3) Derivation of Partial Derivations for Approximate Roll Equation

IR TOar

Consider the equation:

;_“gAdZ
2V 1

b

o qAd
[clp + Clpv (v, - W] (¢ - ysine) - %-Tx—cm 8

N

b e

-tan 6 (Y cos 6 - ¢ O sin &) + o b

The experimental data is provided as the angle ¢.

The initial conditions are ¢0 and ¢0.

. g
3¢ _qAd 3¢ ) .
3¢, TIVI 8C (C1p + Crp, Vo= V1 = - Fy 3C;/30

J

a1




Y T R YR

Use is made of the equality p = & - i sin 6. 9, J, @, Y, V and q are
considered known and therefore are designated independent variables. This
reduces the complexity of this problem as most higher order teims (é, &, &)
now vanish. The sp%n gp) was computed during the integration of the equations

of motion, and as (¢ -¥ sin 8) always appears as a pair, p is substituted.

42

PR . ket i, e Sk N —

PSSR <

PR

S Yo, SO




1.

SECTION V
TECHNTQUYE APPLICATION

COMPUTER PROGRAMS

The equations derived in the previous section are applied through five

computer programs interconnected through the use of overlays.

The five programs consist of:

PRENUT - A modified linear theory program used for initialization.
This program provides sufficient initial guesses and program con- 3
trols to properly execute the numerical integration data reduction
process.

EARTH HEEVE - This program analyzes the translational and roll
motion of the projectile, determining the earth-fixed velocity
vectors and roll rate, It transforms the measured fixed plane 3
angles to missile angles and determines the axial force, normal
force and roll coefficients.

MODYAW - This program makes a final complete modified linear
theory analysis of the rolling, translational, and angular motion
of the projectile from the experimental data.

TRIANGLES - This numerical integration program is utilized to
analyze the angular motion of one, two, or three experiments 1
simultaneously., Several options are available to the user and

can be utilized for obtaining non-linear aerodynamic coefficients.
TRIHEEVE - The translational motion of up to three experiments is

fitted by this program. Options are available to assist the user

in obtaining non-linear aerodynamic coefficients,
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Each program's inputs and outputs except MODYAW are discussed in the
following section. A diagram showing pictorially the flow of a typical
reduction of three sets of data which are to be reduced simultaneously by

TRIHEEVE and TRIANGLES is given as Figure 3.

DIRECTION COSINES ' ,
EXPERIMENTAL Xe Yo Zq
EXPERIMENTAL ROLL ANGLE

i .

PRENUT
INITIAL
FITS

1

EARTH

HEEVE
TRANSFORM TO
MISSILE

’

MODYAW I
FINAL LINEAR  fag— 1

THEORY FIT

TRIANGLES
ANGULAR e mme—
MOTION

I 1 ®
TRIHEEVE @

r——®] TRANSLATIONAL
o~ ) MOTION Q

O] (V1R (©)

After three designated experiments are reduced individually,
a multiple TRIHEEVE reduction is made followed by a
multiple TRIANGLES reduction.

Figure 3. Data Reduction System Flow Diagram
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a. Program -

PRENUT

Purpose - Perform a linear theory data reduction and provide estimates of

¢ InRuts -

OutEuts -

Comments:

initial conditions and aerodynamic coefficients for the EARTH
HEEVE program and the TRIANGLES program.

Earth fixed direction

cosines

Earth fixed

coordinates
Roll angle

Projectile physical
properties

Estimates for

Experimental data

Fitted values of

Initial conditions

Aerodynamic
coefficients

m,n
e’ Te’ Pe

L versus t

0, b, ¢, X, Y, 2, ¢t

6 ¢ versus t

versus t

8, ¥ Bhs Vas $ns P
mo mo’ 0® 0% Yo’ Y0

C

npa’ CNa

CXO’ Cma’ Cmq’

The roll angle, ¢, is measured from 0° to 360° degrees and must

be correctly (exactly) unwound to be a continuous accumulative

function of time (O° to »). This is accomplished in a subroutine

contained in PRENUT.
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Equation of Motion - PRENUT

BT A

K e(kl i

WS

sk indhd & o

e + Kze(A2 * 1w2)xe + K4

amplitude nutation vector
amplitude precession vector
nutation damping factor

precession damping factor

nutation frequency (¢1 + ;1 Xé)

Y

precession frequency (¢2 + ;2 xe)

yaw of repose vector

distance traveled
nutation vector orientation

precession vector orientation
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b. Program - EARTH HEEVE

El Purpose - Perform a numerical intcgration reduction of the carth- fixed

. (translational) equations of motion (equations 40, 41 and 42)

Z( detemining best fit to X , Y , Z .

;6 e e e H
- L ,
%I Inputs - From PRENUT

] , Experimental data 0, ¥, ¢, Xe’ Ye, Ze’ varsus t
4

% Fitted data 6 , ¥ versus t

4 m’ "m

Physical properties m, Ix’ Iy’ CG, d, ¢

Estimates for CXO’ CNa’ sz, CYpa’ Cma’ Cnpa’ Cmq’ Clp

s L, versus t
e
0 0

Initial conditions X , xe s Ye ’ Ye s Z

% %% %% S °

em H ‘pm 1 60! q’o) ¢0’ po

0 0

Outputs - Experimental data 8, v, ¢, Xos Yos Z, VErsus t

Computed data em, ¥, versus t

Computed initial Xe , Xe , Ye , Ye , Ze , Ze

s 0 0 0 0 0 0
conditions
Computed parameters V. q, P, Y Versus t (from best fit)
Computed coefficients CXO’ CNa’ CYpa’ va, CXZ Clp’ C16 i

e

Comments: The final numerical integration roll fit is performed in this

program with final values of C1p and CIG determined. Exact

transformation from measured fixed plane angles to missile angles

hde piagiri o e

are performed using the theoretical Xgs Yoo and Zg velocity profiles.
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Equations of Motion - EARTH HEEVE

>

2
VXe [C + C €]

v

—

\

2. W
S]V

52] cos

Ye X2

v
\
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sin ¢

sin

8 sin

Ccos
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cos

v
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8
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cos 6 cos ¢

cos Y

sin ¢

sin 6 cos ¢

sin ¢

cos ¥

sin 6 sin ¢
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c. Program - TRIANGLES

Purpose - To provide a best fit to the angular motion experimental trans-
formed data (em, wm? using the equations of motion (equations 30

and 31). To provide a multiple fit of more than one experimental .

case using common coefficients for all cases.

Inputs - From EARTH HEEVE

by

Experimental data 0, ¥, ¢, Xg» Yg» Zgs VETSUS t :
i
Transformed data em, wm’ versus t 2
Computed data V, q, p, v, Vversus t q
i
; Computed coefficients CXO’ CNa’ CYpa’ va, sz ;
Estimated coefficients C_, C_ , C :
mo’ mq’ Tnpo 1
Estimates for 6m ’ wm » 6, ¥
0 0
Physical properties m, Ix’ Iy’ CG, d, & é
Initial conditions X +X . »Y_ »Y_ 2 »1Z
¢ % %% ° © ©o
Qutputs - Experimental data 0, ¥, ¢, Xe’ Ye’ Ze’ versus t
Best fit em, wm versus t /i
Computed data

PR versus t, I_/I
» L/, i
Computed coefficients CXO’ CNa’ CYpa’ va, sz |

]

Final computed Cma’ Cmq, Cnpu plus non-linear terms ,
coefficients
Initial conditions X ,X ,Y ,Y ,Z ,Z ,6 .8
. € e0 & € € ¢ mo’ 0’
\f’mo H ¢0 3
4
49

P P . SRCOY e L, M e T :
- o S -
e e i b st



5 1
: 4
h Comments: The final aerodynamic moment coefficients Cma’ Cmq’ and Cnpa 3
x (functions of angle of attack and Mach number) are derived from
! this program both for single and multiple fits.
é
%
3 ;
s ‘ ?
3 .
{ . |
! 4
3
¥ :

52
3 :
4
E.
3
1
1
1
3 |
. « j
"]
f - 4
3
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Equations of Motions - TRIANGLES

&=-E%Cx+gsine-éw+&)cosev ¢))
\}=-E%CNa%+E%g-—%-CYPa{’,—-J;cose fu + w tan 6] (2)
&=—E-3-CNG%—E%E—%CYPa%-gcose+t};sinev+éu (3)
;:a%g—%ﬁclp+tane[coseil;-\i;(;sine]+éli:/cose ‘(4)

p=<i>-xi)sine

T;_ ma  mog mos Moy
2
—Ad 2
+q [C_ +C €] 8
2VIy mq nq,
2
—Ad"p 2 by v
+q2VIy [Cnpa+cnpa3€ +Cnpozselv
—Ad .
-q3—[C5 By sin ¢ - &, cos )]
y
. Ix .2
-wcosep-i-—-\p cos 6 sin ©
- —Ad 2 4 6 v
\pz[-qf;— [Cma+cma3e +Cma5€ +Cmoz78 +Cmav (vo_v)]v

(6)
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Purpose - To provide
X, Y, and Z data. To provide a multiple fit of more than one

—btmam

d. Program - TRIHEEVE

experimental case using unique coefficients for all cases.

I Inputs - From TRIANGLES
3 Experimental
3 v
RBest fit

Computed coefficient

(estimates)

Computed initial
conditions

Computed

Physical properties

Qutputs - Final best fits of

Computed data

Final computed
coefficients

Transformed e and ¥ based on new velocity profile

Comments: TRIHEEVE computes the final best valu
normal force, and Magnus Force coefficients both for single

and multiple fits.

a best fit of the equations of motion to the measured

0, ¥, ¢, X Ye» Z,, versus t

em’ wm versus t | i
P
Cxo’ CNa’ CYpu’ sz’ CXV ;
X X ,Y ,Y. ,Z ,Z 1
eg e0 ey’ €’ € %
Py vs t

X,Y ,Z versust
e’ e e

V, q, p, Y, Versus t

Cys. C C

Na’

X* Ypa

and angle of attack
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|
3 Equations of Motion - TRIHEEVE
] _
Y in2 )
: vXe - [C + Cx sin” a + va (V - VREF)] cos 6 cos ¢
A in - ¥ si
: + + CN sm o] [ sin ¢ v sin 8 cos Y]
2 ( i
-E—A—P-—d-[c +C sin2 al [y-sinw+y-cosqzsin 8] ;
m2V Ypa Ypos \' \Y v
. + A [-C (sin ¢ sin ¢ + cos ¢ sin 6 cos ¥)
m NGA
+C (cos ¢ sin ¢ - sin ¢ sin 6 cos ¥)]
NGB ]
1
V. = aA[C + C sin2a+C (V - VREF)] cos 8 sin ¢ 2
L Ye ~ m "X X2 XV
-E—A[C + C sin2 ol [‘—’-COS!D-I-Y-SineSin V] ]
m No Naj v \ 'i
qApd .2 W vV o. .
* S [CYpa + CYpa3 sin” a] [v cos ¢ - v sin ¥ sin 0]
-L&[-C (sin ¢ cos ¢ - cos ¢ sin 6 sin Y)
m N6A
+C6 (cos ¢ cos ¥ + sin ¢ sin 6 sin ¢)]

Néy

-

qA .2 .. QA j
—[CX+C sin a+va (V - VREF)] sin 6 = [CNa .

i
+

Ze X2

. 24 W
CNa3 sin”] v cos 0 !

+

| Apd ¢ i 2 Voo :J:.A . o
n‘TLV“\ D) {¢ Ypu 'Y|m_‘ sin” o} i cos 0 m [('N& cos

CN&B sin ¢] cos 6 - g l

-+
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2. NUMERICAL ROUTINES

All numerical integration performed in the previously described programs
utilize the fourth order Runge-Kutta method. It is acknowledged that there , =
are extensive numerical integration techniques in existence, many of which 4
are claimed to be much more efficient than the Runge-Kutta method. The two

|
. { primary reasons for implementing this technique are that (1) Runge Kutta
methods are self-starting, the interval between steps may be changed at will,
1 d and in general, they are particularly straightforward to apply on a digital 3

computer, and (2) they are comparable in accuracy and often more accurate

than corresponding order predictor-corrector methods except that the integra-

v”"‘FFW‘J‘

tion interval is a more significant parameter in texrms of solution accuracy.
Experience has demonstrated this technique to be reliable, stable, and of ]

e

sufficient efficiency from a storage versus execution time viewpoint given
the form of the differential equations solved for as previously described ]
(equations of motion and partial differential correction equations). During j

development of these programs, test implementation of a modified Adams-Moulton q

R YT

predictor-corrector routine was made for purposes of comparison., The results
indicated that both integration techniques achieved the same degree of accur-

acy and execution time. Comparable execution times resulted from the fact
that the predictor-corrector method had difficulty in starting and time step

adjustment.

The matrix inversion routine implemented in all the programs utilizes a
Gaussian elimination method. This is a direct method (versus iterative) and
eliminates truncation error. Over a period of years during which many sets
of test data were reduced, no problems were encountered with either the

numerical integration or the matrix inversion methods.

ki

Additional details on these two numerical routines may be found in

references 26 and 27.

st e s s e i
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SECTION VI
CONCLUSIONS AND FUTURE ACTION

An extensive set of data reduction computer programs for analyzing aero-
ballistic range data has been developed and sequenced to produce a sophisti-
cated system. These programs are primarily geared tc the reduction and
analysis of spin-stabilized or spinning statically stable projectiles with

small configuration asymmetries. %

The need exists for a similar set of programs tailored toward the analy-
sis of rolling or non-rolling projectiles with configurational and mass
asymmetries. In this manner, the ballistic range could become a useful tool

in the testing of winged re-entry bodies and non-symmetric nose -cones.
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APPENDIX I

COORDINATE SYSTEM IDENTITIES-TRANSFORMATIONS
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DOWN RANGE
SIDE VIEW
POSITIVE DIRECTIONS SHOWN

Figure I-1. Coordinate System Fixed Plane (Pcsitions)
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SIDE VIEW

FLIGHT PATH
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TOP VIEW
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/ DIRECTION OF POSITIVE SPIN (ROLL)

<l

. LOOKING DOWN
' RANGE

Figure I-2. Coordinate System Fixed Plane (Rotation)
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sin

sin

sin

tan

tan

<
{]

x
[}

=1
[{]

Angular Identities
Missile Angles

. 2 2 . 2
o WJr;ln Y, *+ oS wm sin em

a =
8 = sin x_/cos V¥ {
m Xm n
1
8 = sin a
m m
wm = - sin Bm cos X,
Bm = - tan wm/cos em
Missile Angles - Earth Angles
o - sin-1 [sin y_/cos ¥ ]
m e m
= sin'1 {sin ¢ /cos v 1 + &
m e e
Angular Identities
Earth Angles
6 = tan ¥ cos Y
Missile Velocities - Missile Angles ;
- V sin ¢m
V cos y_ sin ©
m . nm
s
V cos ¢ cos 6
m m 4
4
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3
: Missile Angle - Velocity Relationship
! ' |
L ANGLE SINE COSINE TANGENT E
'w v u2 + v?‘ w
. Xm
] \/u + Vv o+ W '\[u + v +w2 u2+v2
1
1
5 -V Y u2 + W2 -V
¥
m
\/u + Vv +w2 u2+v2+w u2+w2
W u w 3
) -_
] n f
u2 + w2 u2 + w2 u
| . ¥ s v |
u” o+ w2 u” o+ w2 Y :
i
3 %
[ Bm v u v £
u2 + v2 u2 + v2 Y
_ v2 + w2 u v2 + w2
5 —_—
m /'—‘—"—"
‘ ﬁ+v2+w u2+v2+w2 u ~’:
Trajectory Angle - Velocity Relationships
{
: ANGLE SINE COSINE TANGENT ' i
2 2
. , Vze Ve * Vye VZe }?
e
2 2 2 2 2 2 2 2 |
VVXe * er * vZe VVXe * er * VZe v)(e * er i
5 er VXe vYe g
e —
2 2 ,
VXe * VYe vXe * er v)(e j
]
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¥
13
£
4
v
3
s

Transformations
Missile to Earth

VXe=ucosecosw-vsin\p+wsinecosq;
VYe =ucos §sin ¢y +vcos ¢y +wsin6 siny
V, =-usin 0 + w cos 8

Ze

Earth to Missile

u= VXe cos 6 cos Y + VYe cos © sin ¢ - VZe sin 6

vV=- VXe sin ¢ + VYe cos ¥

w=V, sin 6 cos ¢y + V o sin 6 sin ¢ + VZe cos 0

Xe Y

Direction Cosines to Fixed Plane Angles

[s2]
[}

_ sin} (n)

.- 2 2
sin 1(me/ m, * Py )

<
1

where: n_, m,s P, are the direction cosines of the missiles X axis relative

e
to the range coordinate system (fixed plane).
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